Gene Mapping, Linked & Unlinked Genes

1

Packet #14

Introduction I

 According to Mendel's law of independent assortment, a dihybrid cross, between individuals that are heterozygous for both alleles, should provide a 9:3:3:1 ratio.

Introduction II

- However, Bateson and Punnett discovered that while running a similar experiment, they discovered that there was a higher amount of flowers with the same parental genotype vs. new recombinant genotypes.
- This did not meet the 9:3:3:1 ratio as results should have.
- The results were due to the fact that the two alleles were linked to each other and were not crossing over independent of each other.

LINKED GENES VS. UNLINKED GENES

Linkage

- Each chromosome behaves genetically as if it consisted of genes arranged in a linear order
- <u>*Linkage*</u> is the tendency for a group of genes, <u>*on the same</u></u> <u><i>chromosome*</u>, to be inherited <u>*together*</u> via crossing over</u>

Linkage II

- However, for linkage to occur, the genes, located on the same chromosome, <u>must be close enough to each other.</u>
- If the genes are close enough to each other, and have a high probability of crossing over together, then they are considered to be <u>linked genes</u>.

Linkage III

- If genes are linked together, then Mendel's law of independent assortment does not apply.
 - Genes, in this case, are not passed on independent of another gene.
 - However, linked genes may recombine during crossing over.
 - The ratio of 9:3:3:1 is not met

DETERMINING WHETHER GENES ARE LINKED OR UNLINKED

Recombination of Genes

- Recombination of unlinked genes is achieved via independent assortment of chromosomes
 - Mendel's Law
- Recombination of linked genes is only possible during crossing over.

Two-point Cross I

- The two-point test cross allows scientists to determine whether genes are linked or unlinked.
- In order to perform a <u>two-point test cross</u> one parent <u>must be heterozygous for</u> <u>both alleles</u> while the other must be <u>homozygous recessive for</u> <u>both alleles</u>.
 - The results of the cross is observed in the F₂ generation.

Two-point Cross II

- If the majority of the offspring have a genotype similar to one of the parents, then the genes are linked.
- If the majority of the offspring have a recombinant genotype, having different genotypes than the parents, then the genes are unlinked.

Two Point Cross Example

- Parent #1
 - b+bvg+vg
 - Grey with normal wings
- Parent #2
 - bbvgvg
 - Black with vestigial wings

Two-Point Cross

	$\mathbf{b}^+ \mathbf{v}^+$	bv	b^+v	bvg+
bvg	b+bvg+vg	bbvgvg	b+bvgvg	bbvg+ vg
Expected Results	575	575	575	575
Actual Results	965	944	206	185

Calculations

- Parental Genotypes
 - 965 (42%) +944 (41%) = 1909
 - 1909/2300 = 83%
- Recombinant Genotypes
 - 206 (9%)+185 (8%) = 391
 - 391/2300 = 17%
- If independent assortment was to occur, the percentages would be 25% a piece.
- Based on the data, the recombinants arose because of crossing over

GENE MAPPING

Gene Mapping

- By measuring the **frequency of recombination** between linked genes, it is possible to construct a linkage map of a chromosome
 - Scientists were able to develop a detailed genetic map of Neurospora (fungus), fruit fly, the mouse, yeast and many plants, that are particularly important as crops, via gene mapping.

Gene Mapping II

- The information gathered from the two point cross, is used to determine the map distance between the two alleles.
- The recombinant frequencies (percentages) are used as map units (map distance)that separate two alleles.
 - Map distance = (Number of recombinant offspring)/(Total number of offspring) * 100
 - If the recombinant = 58%
 - The genes are 58 map units apart.

Determining the Order AND Distance Between Linked Genes
THREE POINT CROSS

Introduction I

 A three point cross can yield additional information about map distance AND gene order.

Steps of Three Point Cross

- 1. Cross two true-breeding strains that differ with regard to alleles.
- 2. Perform a test cross my mating F_1 female heterozygous (all three alleles) to male flies that are homozygous recessive (for all three alleles.
- 3. Collect data for the F_2 generation.
- 4. Calculate the map distance between pairs of genes.
- 5. Construct map.

Gene Mapping III Example

• Create a map using the information provided below.

- A & D = 2 units (2% recombination frequency)
- B & D = 10 units (10% recombination frequency)
- C & B = 3 units (3% recombination frequency)
- C & A = 5 units (5% recombination frequency)

SEX-LINKED GENES

Introduction I

- Sex is determined by sex chromosomes
 - X and Y
 - XX = female
 - XY = male

How is Sex Determined in Humans?

- Sex is determined by the sex chromosome carried by the sperm.
- What sex chromosome is carried by the egg?

The X Chromosome

- The X chromosome contains many important genes that are <u>unrelated to sex</u> <u>determination</u>
 - These genes are required for both males and females
 - A male receives ALL of his <u>X-linked genes</u> from his mother while a female receives her <u>Xlinked genes</u> from both parents.

Dosage Compensation

- Female mammals display dosage compensation.
 - Only one of the two chromosomes is expressed in each cell
 - The other allele is inactive
 - Seen as a dark-staining <u>Barr body</u> at the edge of the interphase nucleus.
 - Equalizes the expression of x-linked genes for both genders.

Dosage Compensation II

- A random event that occurs in each somatic cells
 - A female that is heterozygous expresses one of the alleles in about half her cells and the other allele in the other half

PRACTICE HOMEWORK ASSIGNMENTS

Practice Assignment #1

 Determine if the genes are linked together using the information provided.

	$\mathbf{b}^+\mathbf{v}^+$	bv	$\mathbf{b}^{+}\mathbf{v}$	bvg ⁺
bvg	b+bvg+vg	bbvgvg	b+bvgvg	bbvg+ vg
Expected Results	300	300	300	300
Actual Results	310	315	287	288

Practice Assignment #2

 Determine if the genes are linked together using the information provided.

	b^+v^+	bv	b ⁺ v	bvg ⁺
bvg	b+bvg+vg	bbvgvg	b+bvgvg	bbvg+ vg
Expected Results	295	295	295	295
Actual Results	360	380	230	230

