Characterizing and Classifying Eukaryotes
General Characteristics of Eukaryotic Organisms

- Eukaryotic microorganisms
 - Protozoa
 - Fungi
 - Algae
 - Slime molds
 - Water molds

- Include both human pathogens and organisms vital for human life
General Characteristics of Eukaryotic Organisms

• **Reproduction of Eukaryotes**
 • More complicated than that in prokaryotes
 • Most eukaryotic DNA packaged as chromosomes in the nucleus
 • Have variety of methods of asexual reproduction
 • Many reproduce sexually by forming gametes and zygotes
 • Algae, fungi, and some protozoa reproduce both sexually and asexually
General Characteristics of Eukaryotic Organisms

• **Reproduction in Eukaryotes**
 • Nuclear division
 • Nucleus has one or two complete copies of genome
 • Single copy (**haploid**)
 • Most fungi, many algae, some protozoa
 • Two copies (**diploid**)
 • Include plants, animals, fungi, algae, and protozoa
 • Two types
 • Mitosis
 • Meiosis
General Characteristics of Eukaryotic Organisms

• **Reproduction in Eukaryotes**
 • Nuclear division
 • **Mitosis**
 • Cell partitions replicated DNA equally between two nuclei
 • Maintains ploidy of parent nucleus
 • Four phases
 • Prophase
 • Metaphase
 • Anaphase
 • Telophase
Figure 12.1a The two kinds of nuclear division: mitosis and meiosis.
General Characteristics of Eukaryotic Organisms

• Reproduction in Eukaryotes
 • Nuclear division
 • Meiosis
 • Nuclear division that partitions chromatids into four nuclei
 • Diploid nuclei produce haploid daughter nuclei
 • Two stages—meiosis I and meiosis II
 • Each stage has four phases
 • Prophase
 • Metaphase
 • Anaphase
 • Telophase
Figure 12.1b The two kinds of nuclear division: mitosis and meiosis (1 of 2).

(b) Meiosis

Diploid nucleus (2n)

DNA replication

1. Prophase I

Tetrad (two homologous chromosomes, four chromatids)

2. Late prophase I

Crossing over

3. Metaphase I

4. Anaphase I

Chromosome (two chromatids)

5. Telophase I
Figure 12.1b The two kinds of nuclear division: mitosis and meiosis (2 of 2).
Table 12.1 Characteristics of the Two Types of Nuclear Division

<table>
<thead>
<tr>
<th></th>
<th>Mitosis</th>
<th>Meiosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Replication</td>
<td>During interphase, before nuclear division</td>
<td>During interphase, before meiosis I begins</td>
</tr>
<tr>
<td>Phases</td>
<td>Prophase, metaphase, anaphase, telophase</td>
<td>Meiosis I—prophase I, metaphase I, anaphase I, telophase I Meiosis II—prophase II, metaphase II, anaphase II, telophase II</td>
</tr>
<tr>
<td>Formation of Tetrads (alignment of homologous chromosomes)</td>
<td>Does not occur</td>
<td>Early in prophase I</td>
</tr>
<tr>
<td>Crossing Over</td>
<td>Does not occur</td>
<td>Following formation of tetrads during prophase I</td>
</tr>
<tr>
<td>Number of Accompanying Cytoplasmic Divisions That May Occur</td>
<td>One</td>
<td>Two</td>
</tr>
<tr>
<td>Resulting Nuclei</td>
<td>Two nuclei with same ploidy as the original</td>
<td>Four nuclei with half the ploidy of the original</td>
</tr>
</tbody>
</table>
Mitosis

BioFlix™: Mitosis
General Characteristics of Eukaryotic Organisms

• **Reproduction in Eukaryotes**
 • Cytokinesis (cytoplasmic division)
 • Typically occurs simultaneously with telophase of mitosis
 • In some algae and fungi, postponed or does not occur at all
 • Results in multinucleated cells called **coenocytes**
Figure 12.2 Different types of cytoplasmic division.
Figure 12.3 Schizogony.
General Characteristics of Eukaryotic Organisms

• Classification of Eukaryotic Organisms
 • Early taxonomy schemes grouped organisms based on structural similarities
 • Modern classification is based more on similarities in nucleotide sequences
Figure 12.4 The changing classification of eukaryotes over the centuries.
General Characteristics of Eukaryotic Organisms

• **Tell Me Why**
 • Why is it incorrect to call mitosis “cell division?”
Protozoa

- Diverse group defined by three characteristics:
 - Eukaryotic
 - Unicellular
 - Lack a cell wall
- Motile by means of cilia, flagella, and/or pseudopods
 - Except a subgroup: apicomplexans
Protozoa

• **Distribution of Protozoa**
 • Require moist environments
 • Most live in ponds, streams, lakes, and oceans
 • Critical members of plankton
 • Others live in moist soil, beach sand, and decaying organic matter
 • Very few are pathogens
Protozoa

• Morphology of Protozoa
 • Great morphological diversity
 • Some have two nuclei
 • Macronucleus
 • Contains many copies of the genome
 • Micronucleus
 • Variety in number and kinds of mitochondria
 • Some have *contractile vacuoles* that pump water out of cells
 • Different stages in life cycle
 • Motile feeding stage called a trophozoite
 • Resting stage called a cyst
Figure 12.5 Contractile vacuoles.
Protozoa

• Nutrition of Protozoa
 • Most are chemoheterotrophic
 • Obtain nutrients by phagocytizing bacteria, decaying organic matter, other protozoa, or the tissues of host
 • Few absorb nutrients from surrounding water
 • Dinoflagellates and euglenoids are photoautotrophic
Protozoa

• Reproduction of Protozoa
 • Most reproduce only asexually
 • Binary fission or schizogony
 • Few also have sexual reproduction
 • Some become gametocytes that fuse to form diploid zygotes
 • Some utilize a process called conjugation
Protozoa

- **Classification of Protozoa**
 - Classification of protozoa has shifted over the years
 - Revised and updated based on nucleotide sequences
 - One current scheme groups protozoa into six groups
 - Parabasala
 - Diplomonadida
 - Euglenozoa
 - Alveolates
 - Rhizaria
 - Amoebozoa
Protozoa

- **Classification of Protozoa**
 - Parabasala
 - Lack mitochondria
 - Have a single nucleus
 - Contain Golgi body–like structure called a parabasal body
 - Important parabasalids
 - *Trichonympha*
 - *Trichomonas*
Figure 12.6 *Trichonympha acuta*, a parabasalid with prodigious flagella.
Protozoa

- **Classification of Protozoa**
 - Diplomonadida
 - Lack mitochondria
 - Have *mitosomes* in the cytoplasm
 - Mitochondrial genes found in the nuclear chromosomes
 - Also lack Golgi bodies and peroxisomes
 - Have two equal-sized nuclei and multiple flagella
 - Prominent diplomonad
 - *Giardia*
Protozoa

• **Classification of Protozoa**

 • **Euglenozoa**

 • Characteristics of both plants and animals

 • Flagella contain a crystalline rod of unknown function

 • Mitochondria have disk-shaped cristae

 • Two groups

 • Euglenids

 • Kinetoplastids
Protozoa

• Classification of Protozoa
 • Euglenozoa
 • Euglenids
 • Photoautotrophic, unicellular microbes with chloroplasts
 • Historically classified as plants
 • Store food as polysaccharide called paramylon
 • Kinetoplastids
 • Have region of mitochondrial DNA called a kinetoplast
 • Some kinetoplastids are pathogenic
 • Trypanosoma
 • Leishmania
Figure 12.7 Two representatives of the kingdom Euglenozoa.
Protozoa

- **Classification of Protozoa**
 - Alveolates
 - Have membrane-bound cavities called alveoli
 - Purpose is unknown
 - Divided into three subgroups
 - Ciliates
 - Apicomplexans
 - Dinoflagellates
Figure 12.8 Membrane-bound alveoli found in some protozoa.
Protozoa

- Classification of Protozoa
 - Alveolates
 - Ciliates
 - Use cilia to move themselves or water
 - All are chemoheterotrophs and have two nuclei
 - Balantidium is the only ciliate pathogenic to humans
 - Apicomplexans
 - Chemoheterotrophic pathogens of animals
 - Complex of organelles allow them to penetrate host cells
 - Plasmodium, Cryptosporidium, and Toxoplasma cause disease in humans
Figure 12.9 A predatory ciliate, *Didinium* (left), devouring another ciliate, *Paramecium*.
Protozoa

• Classification of Protozoa
 • Alveolates
 • Dinoflagellates
 • Unicellular microbes with photosynthetic pigments
 • Historically classified as algae
 • Large proportion of freshwater and marine plankton
 • Motile dinoflagellates have two flagella
 • Many dinoflagellates are bioluminescent
 • Abundance in marine water is one cause of red tides
 • Some dinoflagellates produce neurotoxins
Figure 12.10 *Gonyaulax*, a motile armored dinoflagellate.
Protozoa

• Classification of Protozoa
 • Rhizaria
 • Amoebae are protozoa that move and feed with pseudopods
 • Amoebae exhibit little uniformity
 • Rhizaria are amoebae with threadlike pseudopods
 • Foraminifera
 • Often live attached to the ocean floor
 • Most are fossil species
 • Radiolaria
 • Have ornate shells of silica
 • Live as part of the marine plankton
Figure 12.11 Rhizaria called foraminifera (here, *Globigerina*) have multichambered, snail-like shells of calcium carbonate.
Figure 12.12 Radiolarians, a type of rhizaria.
Protozoa

• Classification of Protozoa
 • Amoebozoa
 • Amoebae with lobe-shaped pseudopods and no shells
 • Includes some human pathogens
 • *Naegleria*
 • *Acanthamoeba*
 • *Entamoeba*
 • Slime molds are now classified as amoebozoa
 • Two types
 • Plasmodial slime molds
 • Cellular slime molds
Table 12.2 Characteristics of Protozoa

<table>
<thead>
<tr>
<th>Category</th>
<th>Distinguishing Features</th>
<th>Representative Genera Mentioned in the Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parabasala</td>
<td>Parabasal body; single nucleus; lack mitochondria</td>
<td>Trichomonas</td>
</tr>
<tr>
<td>Diplomonadida</td>
<td>Two equal-sized nuclei; lack mitochondria, Golgi bodies, and peroxisomes; multiple flagella</td>
<td>Giardia</td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Flagella with internal crystalline rod; disk-shaped mitochondrial cristae</td>
<td></td>
</tr>
<tr>
<td>Euglenids</td>
<td>Photosynthesis; pellicle; “eyespot”</td>
<td>Euglena</td>
</tr>
<tr>
<td>Kinetoplastids</td>
<td>Single mitochondrion with DNA localized in kinetoplast</td>
<td>Trypanosoma, Leishmania</td>
</tr>
<tr>
<td>Alveolates</td>
<td>Alveoli (membrane-bound cavities underlying the cytoplasmic membrane); tubular cristae in mitochondria</td>
<td></td>
</tr>
<tr>
<td>Ciliates</td>
<td>Cilia</td>
<td>Balantidium, Paramecium, Didinium</td>
</tr>
<tr>
<td>Apicomplexans</td>
<td>Apical complex of organelles</td>
<td>Plasmodium, Cryptosporidium, Toxoplasma</td>
</tr>
<tr>
<td>Dinoflagellates</td>
<td>Photosynthesis; two flagella; internal cellulose plates</td>
<td>Gymnodinium, Gonyaulax, Pfiesteria</td>
</tr>
<tr>
<td>Rhizaria</td>
<td>Threadlike pseudopods</td>
<td></td>
</tr>
<tr>
<td>Foraminifera</td>
<td>Shells of calcium carbonate</td>
<td></td>
</tr>
<tr>
<td>Radiolarians</td>
<td>Shells of silica</td>
<td></td>
</tr>
<tr>
<td>Amoebozoa</td>
<td>Lobe-shaped pseudopods; no shells</td>
<td></td>
</tr>
<tr>
<td>Free-living and parasitic forms</td>
<td>Do not form aggregates</td>
<td>Naegleria, Acanthamoeba, Entamoeba</td>
</tr>
<tr>
<td>Plasmodial (acellular) slime molds</td>
<td>Multinucleate body (called plasmodium)</td>
<td>Physarum</td>
</tr>
<tr>
<td>Cellular slime molds</td>
<td>Cells aggregate but retain individual (cellular) nature</td>
<td>Dictyostelium</td>
</tr>
</tbody>
</table>
Protozoa

• Tell Me Why
 • Why did early taxonomists categorize such obviously different microorganisms as parabasalids, diplomonads, euglenozoa, alveolates, rhizaria, and amoebozoa in a single taxon, Protozoa?
Fungi

- Chemoheterotrophic
- Have cell walls typically composed of **chitin**
- Do not perform photosynthesis
 - Lack chlorophyll
- Related to animals
Fungi

• The Significance of Fungi
 • Decompose dead organisms and recycle their nutrients
 • Help plants absorb water and minerals
 • Used for food, in religious ceremonies, and in manufacture of foods and beverages
 • Produce antibiotics and other drugs
 • Serve as important research tools
 • 30% cause diseases of plants, animals, and humans
 • Can spoil fruit, pickles, jams, and jellies
• Morphology of Fungi
 • Two basic body shapes
 • Molds—composed of long filaments called hyphae
 • Yeasts—small, globular, and composed of a single cell
 • Some fungi are **dimorphic**
 • Produce both yeastlike and moldlike shapes
 • Change in response to environmental conditions
Figure 12.13 Fungal morphology.

(a) Septate hypha

(b) Aseptate hypha

(c) Yeast cells’ buds

(d) Dimorphic fungus
Figure 12.14 A fungal mycelium.
Fungi

- **Nutrition of Fungi**
 - Acquire nutrients by absorption
 - Most are *saprobes*
 - Some trap and kill microscopic soil-dwelling nematodes
 - **Haustoria** allow some fungi to derive nutrients from living plants and animals
 - Most fungi are aerobic
 - Many yeasts are facultative anaerobes
Figure 12.15 Predation of a nematode by the fungus *Drechslerella*.
Fungi

• Reproduction in Fungi
 • All have some means of asexual reproduction involving mitosis and cytokinesis
 • Most also reproduce sexually
• **Reproduction in Fungi**

 • Budding and asexual spore formation

 • Yeasts bud in manner similar to prokaryotic budding

 • Some yeasts produce long filament called a *pseudohypha*

 • Filamentous fungi produce lightweight spores that disperse over large distances

 • Asexual spores of molds grouped by mode of development
Figure 12.16 Representative asexual spores of molds.
Fungi

• **Reproduction in Fungi**
 • Sexual spore formation
 • Fungal mating types designated as “plus” and “minus”
 • Four basic steps
Figure 12.17 The process of sexual reproduction in fungi.
• **Dr. Bauman’s Microbiology Video Tutor**
 • For more information, listen to Dr. Bauman describe the main stages of sexual reproduction in fungi.
Fungi

• Classification of Fungi
 • Division Zygomycota
 • Division Ascomycota
 • Division Basidiomycota
 • Deuteromycetes
Fungi

• **Classification of Fungi**
 • Division Zygomycota
 • 1100 known species
 • Most are saprobes
 • Others are obligate parasites of insects and other fungi
 • Reproduce asexually via sporangiospores
 • Microsporidia
 • Once classified as protozoa
 • More similar to zygomycetes by genetic analysis
 • Obligate intracellular parasites
 • Spread as small, resistant spores
Figure 12.18 Zygosporangium.
Fungi

- **Classification of Fungi**
 - Division Ascomycota
 - 32,000 known species
 - Ascomycetes form *ascospores* in sacks called *asci*
 - Also reproduce by conidiospores
 - Includes most of the fungi that spoil food
 - Some infect plants and humans
 - Many are beneficial
 - *Penicillium*
 - *Saccharomyces*
Figure 12.19 Ascocarps (fruiting bodies) of the common morel, *Morchella esculenta*.
Fungi

• Classification of Fungi
 • Division Basidiomycota
 • 22,000 known species
 • Mushrooms and other fruiting bodies of basidiomycetes called **basidiocarps**
 • Basidiomycetes affect humans in several ways
 • Most are decomposers that return nutrients to the soil
 • Many mushrooms produce toxins or hallucinatory chemicals
 • Some cause expensive crop damage
Figure 12.20 Basidiocarps (fruiting bodies).
• **Classification of Fungi**
 • **Deuteromycetes**
 • Heterogeneous collection of fungi with unknown sexual stages
 • Most deuteromycetes belong to the division Ascomycota based on rRNA analysis
 • No longer considered a formal taxon
• **Lichens**

 • Partnerships between fungi and photosynthetic microbes
 • Fungus provides nutrients, water, and protection
 • Photosynthetic microbe provides carbohydrates and oxygen
 • Abundant throughout the world
 • Grow in almost every habitat
 • Occur in three basic shapes
 • Foliose, crustose, fruticose
 • Create soil from weathered rocks
 • Some lichens provide nitrogen in nutrient-poor environments
 • Eaten by many animals
Figure 12.21 Makeup of a lichen.
Figure 12.22 Gross morphology of lichens.
<table>
<thead>
<tr>
<th>Division and Type of Sexual Spore</th>
<th>Distinguishing Features</th>
<th>Representative Genera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zygomycota</td>
<td>Multinucleate (aseptate)</td>
<td>Rhizopus</td>
</tr>
<tr>
<td>Zygosporas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascomycota</td>
<td>Septate; some associate with cyanobacteria or green algae to form lichens</td>
<td>Claviceps, Neurospora, Penicillium, Saccharomyces, Tuber</td>
</tr>
<tr>
<td>Ascospores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basidiomycota</td>
<td>Septate</td>
<td>Agaricus, Amanita, Cryptococcus</td>
</tr>
<tr>
<td>Basidiosporas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Tell Me Why**

 Why isn’t a fungal dikaryon—with its two haploid \(n \) nuclei—considered diploid?
Algae

- Simple, eukaryotic photoautotrophs
- Have sexual reproductive structures in which every cell becomes a gamete
- Differ widely in distribution, morphology, reproduction, and biochemical traits
Algae

• Distribution of Algae
 • Most are aquatic
 • Live in the *photic zone* of fresh, brackish, and salt bodies of water
 • Have *accessory photosynthetic pigments* that trap energy of short-wavelength light
 • Allows algae to inhabit deep parts of the photic zone
Algae

- Morphology of Algae
 - Can have different morphologies
 - Unicellular
 - Colonial
 - Simple multicellular bodies
Algae

• **Reproduction of Algae**

 • Reproduction in unicellular algae

 • Asexual reproduction involves mitosis followed by cytokinesis

 • In sexual reproduction, individual gametes form zygotes that undergo meiosis

 • Reproduction in multicellular algae

 • Reproduce asexually by fragmentation

 • Reproduce sexually with *alternation of generations*
Figure 12.23 Alternation of generations in algae, as occurs in the green alga *Ulva*.
Algae

• Classification of Algae
 • Classification is not settled
 • Classification schemes based on different features
 • Differences in photosynthetic pigments
 • Storage products
 • Cell wall composition
 • Various groups
 • Division Chlorophyta
 • Kingdom Rhodophyta
 • Phaeophyta
 • Chrysophyta
Algae

• Classification of Algae
 • Division Chlorophyta (green algae)
 • Share numerous characteristics with plants
 • Have chlorophylls a and b
 • Use sugar and starch as food reserves
 • Many have cell walls of cellulose
 • 18S rRNA sequences are similar
 • Most are unicellular and filamentous
 • Live in freshwater
 • Some multicellular forms grow in marine waters
Algae

• Classification of Algae
 • Kingdom Rhodophyta (red algae)
 • Have the red accessory pigment phycoerythrin
 • Use the storage molecule glycogen
 • Cell walls composed of agar or carrageenan
 • Both are used as thickening agents
 • Nonmotile male gametes called spermatia
 • Most are marine algae
Figure 12.24 *Pterothamnion plumula*, a red alga.
Algae

• **Classification of Algae**
 • Phaeophyta (brown algae)
 • Motile gametes have two flagella
 • Produce chlorophylls a and c, carotene, and xanthophylls
 • Most are marine algae
 • Use *laminarin* and oils as food reserves
 • Cell walls composed of cellulose and **alginic acid**
 • Alginic acid is used medically and as a thickening agent
Figure 12.25 Hairy flagellum.
Figure 12.26 Portion of the giant kelp *Macrocystis*, a brown alga.
Algae

• Classification of Algae
 • Chrysophyta (golden algae, yellow-green algae, and diatoms)
 • All use *chrysolaminarin* as a storage product
 • Produce more carotene than chlorophylls
 • Now grouped with brown algae and water molds
 • Include diatoms
 • Component of marine *phytoplankton*
 • Major source of the world’s oxygen
Figure 12.27 *Paralia sulcata*, a diatom.
Table 12.4 Characteristics of Various Algae

<table>
<thead>
<tr>
<th>Group (Common Name)</th>
<th>Kingdom</th>
<th>Pigments</th>
<th>Storage Product(s)</th>
<th>Cell Wall Component(s)</th>
<th>Habitat</th>
<th>Representative Genera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyta</td>
<td>Plantae</td>
<td>Chlorophylls a and b, carotene, xanthophylls</td>
<td>Sugar, starch</td>
<td>Cellulose or glycoprotein; absent in some</td>
<td>Freshwater, brackish water, and saltwater; terrestrial</td>
<td>Spirogyra, Prototheca, Codium, Trebouxia</td>
</tr>
<tr>
<td>Rhodophyta</td>
<td>Rhodophyta</td>
<td>Chlorophyll a, phycoerythrin, phycocyanin, xanthophylls</td>
<td>Glycogen</td>
<td>Agar or carrageenan, some with calcium carbonate</td>
<td>Mostly saltwater</td>
<td>Chondrus, Gelidium, Antithamnion</td>
</tr>
<tr>
<td>Phaeophyta</td>
<td>Stramenopila</td>
<td>Chlorophylls a and c, carotene, xanthophylls</td>
<td>Laminarin, oils</td>
<td>Cellulose and alginic acid</td>
<td>Brackish water and saltwater</td>
<td>Macrocystis</td>
</tr>
<tr>
<td>Chrysophyta</td>
<td>Stramenopila</td>
<td>Chlorophylls a, c₁, and c₂; carotene; xanthophylls</td>
<td>Chrysolaminarin, oils</td>
<td>Cellulose, silica, calcium carbonate</td>
<td>Freshwater, brackish water, and saltwater; terrestrial; ice</td>
<td>Stephanodiscus</td>
</tr>
</tbody>
</table>
Algae

• **Tell Me Why**
 • Why aren’t there large numbers of pathogenic algae?
Water Molds

• Differ from fungi in several ways
 • Have tubular cristae in their mitochondria
 • Cell walls are of cellulose instead of chitin
 • Spores have two flagella
 • Have true diploid bodies rather than haploid bodies

• Decompose dead animals and return nutrients to the environment

• Some species are pathogens of crops
 • *Phytophthora infestans* caused the Irish potato famine
Figure 12.28 Water molds help recycle organic nutrients in aquatic habitats.
Water Molds

• **Tell Me Why**

 • How do scientists know that water molds are more closely related to brown algae than to true molds?
Other Eukaryotes of Microbiological Interest: Parasitic Helminths and Vectors

- Parasitic worms have microscopic infective and diagnostic stages.
- Arthropod vectors are animals that carry pathogens.
 - Mechanical vectors
 - Biological vectors
- Disease vectors belong to two classes of arthropod.
 - Arachnida
 - Insecta
Figure 12.29 Representative arthropod vectors.
Other Eukaryotes of Microbiological Interest: Parasitic Helminths and Vectors

- **Arachnids**
 - Adult arachnids have four pairs of legs.
 - Ticks are the most important arachnid vectors.
 - Hard ticks are most prominent tick vectors.
 - A few mite species transmit rickettsial diseases.
Other Eukaryotes of Microbiological Interest: Parasitic Helminths and Vectors

• **Insects**
 • Adult insects have three pairs of legs and three body regions
 • Include:
 • Fleas
 • Lice
 • Flies
 • Mosquitoes
 • Most important arthropod vectors of disease
 • Kissing bugs
Other Eukaryotes of Microbiological Interest: Parasitic Helminths and Vectors

• **Tell Me Why**
 • Why are large eukaryotes such as mosquitoes and ticks considered in a microbiology class?