Polar, Non-Polar & Hydrogen Bonds

Packet #20

Polar Bond

Types of Chemical Bonds

Remember...

1	+ Atomi	c radi	us dec	reases	$s \rightarrow loc$	nizatio	n ener	rgy inc	rease	s → El	ectron	regativ	rity inc	rease	\$ -+			
Group (vertical)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period (horizontal)																		
1	H 2.20																	He
2	Li 0.98	Be 1.57											B 2.04	C 2.55	N 3.04	0 3.44	3.98	No
3	Na 0.93	Mg 1.31											Al 1.61	Si 1.90	P 2.19	8 2.58	Gi 3.16	Ar
4	K 0.82	Ga 1.00	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	NI 1.91	Cu 1.90	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	\$0 2.55	Br 2.96	80 3.00
5	Rb 0.82	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.6	M0 2.16	Te 1.9	Ru 2.2	Rh 2.28	Pd 2.20	Ag 1.93	Cd 1.69	in 1.78	Sn 1.96	Sb 2.05	Te 2.1	1 2.66	Xe 2.60
6	Cs 0.79	Ba 0.89	1	Hf 1.3	Та 1.5	W 2.36	Re 1.9	OS 2.2	b 2.20	Pt 2.28	Au 2.54	Hg 2.00	TI 1.62	Pb 2.33	Bi 2.02	P0 2.0	A1 2.2	Bn 2.2
7	Fr 0.7	Ra 0.9		RI	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
Lanthanoids		La 1.1	Ce 1.12	Pr 1.13	Nd 1.14	Pm 1.13	Sm 1.17	Eu 1.2	Gd 1.2	Tb 1.1	Dy 1.22	Ho 1.23	Er 1,24	Tm 1.25	Yb 1.1	Lu 1.27		
Actinoids		Ac 1.1	Th 1.3	Pa 1.5	U 1.38	Np 1.35	Pu 1.28	Am 1.13	Cm 1.28	Bk 1.3	C! 1.3	Es 1.3	Fm 1.3	Md 1.3	No 1.3	Lr 1.3		

Periodic table of electronegativity using the Pauling scale

See also Periodic table

Bond Polarity & Chemical Bonds

- *** Bond Polarity is due to differences in electro-negativity**
 - * Bond polarity can predict the polarity of a bond
 - * $\Delta EN < 0.4 = non-polar covalent$
 - **∗** △EN between 0.4 and 2.0 = polar covalent
 - * $\Delta EN > 2.0 = ionic$
 - * δ used to indicate partial charges
 - * <u>Dipole movement</u> is the <u>measure of a molecule's overall</u> <u>polarity</u>
 - * $\mu = Q$ (charge) * r (distance)
- * More details to come in Organic Chemistry

Polar Bond

- * A <u>polar bond</u> is formed because <u>one atom</u>, of the compound, <u>being more</u> <u>electronegative grabs</u> <u>more electron density</u> <u>from another atom</u>.
 - * The electronegative atom attempts to steal electrons.

©1999 Addison Wesley Longman, Inc.

Non-Polar Bonds

Types of Chemical Bonds

Non-Polar Bond

* Joining of atoms with the same electronegativity

Hydrogen Bonds

Types of Chemical Bonds

Hydrogen Bonds

- * A strong <u>non-bonding</u> <u>interaction</u> that causes a quick, weak "chemical bond."
 - Occurs when <u>a hydrogen</u> <u>atom</u>, <u>attached</u> to <u>a highly</u> <u>electronegative atom</u>,

interacts with a lone electron from a nearby electronegative atom.

- These bonds are broken almost immediately
 - * Depends on temperature.

Hydrogen Bond

- Although hydrogen bonds are weak, the vast number of them in large molecules makes them collectively significant
 - * The formation of water in various forms.

Phases of Matter

- * Liquid
- * Solid
- * Gas
 - * Elements and molecules can exist in all three phases

Phases of Matter II

Van der Waals Forces

Review