Practice Examination \#8

Name: \qquad Date: \qquad

Students are to provide explanations for ALL questions.

1. Which equation represents a substitution reaction?
A. $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
B. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}+\mathrm{HCl}$
D. $\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}$
2. The equation ${ }_{13}^{27} \mathrm{Al}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{15}^{30} \mathrm{P}+{ }_{0}^{1} \mathrm{n}$ is an example of
A. single replacement
B. analysis
C. transmutation
D. synthesis
3. The reaction represented by the equation

$$
n \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow\left(-\mathrm{C}_{2} \mathrm{H}_{4}^{-}\right)_{\mathrm{n}}
$$

is called
A. saponification
B. fermentation
C. esterification
D. polymerization
4. Given the reaction:

$$
{ }_{13}^{27} \mathrm{Al}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{15}^{30} \mathrm{P}+{ }_{0}^{1} \mathrm{n} .
$$

This reaction is best described as
A. beta decay
B. artificial transmutation
C. fission
D. fusion
5. The Haber process is used to produce
A. sulfur dioxide
B. ammonia
C. sulfuric acid
D. sodium chloride
6. In a reversible chemical reaction, a catalyst changes the rate of
A. the forward reaction, only
B. the reverse reaction, only
C. both the forward and reverse reactions
D. neither the forward nor reverse reaction
7. In a reversible chemical reaction, a catalyst changes the rate of
A. the forward reaction, only
B. the reverse reaction, only
C. both the forward and reverse reactions
D. neither the forward nor reverse reaction
8. In a reversible chemical reaction, a catalyst changes the rate of
A. the forward reaction, only
B. the reverse reaction, only
C. both the forward and reverse reactions
D. neither the forward nor reverse reaction
9. An uncontrolled chain reaction takes place during the
A. operation of a fission nuclear reactor
B. explosion of an atomic bomb
C. production of energy by the Earth's Sun
D. fusion of light nuclei into heavier nuclei
10. Which factors must be equal in a reversible chemical reaction at equilibrium?
A. the concentration of the reactants and products
B. the potential energies of the reactants and products
C. the activation energies of the forward and reverse reactions
D. the rates of reaction of the forward and reverse reactions
11. Which type of reaction is represented by the following equation?

$$
\mathrm{Al}_{2} \mathrm{~S}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{~S}
$$

A. neutralization
B. dehydration
C. electrolysis
D. hydrolysis
12. In the balanced equation:

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \leftrightharpoons \mathrm{X}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})
$$

the particle represented by $X(a q)$ is
A. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$
B. $\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$
C. $\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
13. Which is a product of a condensation reaction?
A. O_{2}
B. CO_{2}
C. H_{2}
D. $\mathrm{H}_{2} \mathrm{O}$
14. Which type of reaction occurs when 50 -milliliter quantities of $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ are combined?
A. hydrolysis
B. ionization
C. hydrogenation
D. neutralization
15. The reaction $2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is forced to occur by use of an externally applied electric current. This procedure is called
A. neutralization
B. esterification
C. electrolysis
D. hydrolysis
16. The corrosion of iron is an example of
A. an oxidation-reduction reaction
B. an addition reaction
C. a substitution reaction
D. a neutralization reaction
17. Given the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}
$$

This reaction represents
A. substitution
B. addition
C. esterification
D. saponification
18. Which process can be used to separate water from $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$?
A. dehydration
B. condensation
C. sublimation
D. filtration
19. The reaction $\mathrm{nC}_{2} \mathrm{H}_{4} \rightarrow\left(-\mathrm{C}_{2} \mathrm{H}_{4}-\right)_{\mathrm{n}}$ is an example of
A. saponification
B. esterification
C. polymerization
D. fermentation
20. Given the unbalanced equation:

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{CaSO}_{4}
$$

What is the coefficient in front of the CaSO_{4} when the equation is completely balanced with the smallest whole-number coefficients?
A. 1
B. 2
C. 3
D. 4
21. Given the unbalanced equation

$$
\mathrm{Cr}^{0}+\mathrm{Sn}^{2+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Sn}^{0}
$$

What is the coefficient in front of the Cr^{3+} when the equation is balanced using smallest whole-number coefficients?
A. 1
B. 2
C. 3
D. 6
22. When the equation $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ is completely balanced, the sum of all the coefficients will be
A. 5
B. 8
C. 3
D. 4
23. Given the unbalanced equation:

$$
2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+\ldots \mathrm{Cl}^{-} \rightarrow 2 \mathrm{Mn}^{2^{+}}+8 \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{Cl}_{2}
$$

What is the coefficient in front of the Cl^{-}when the equation is completely balanced using whole numbers?
A. 1
B. 2
C. 5
D. 10
24. In the balanced equation $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+2 \mathrm{X}$, the compound represented by X is
A. $\mathrm{Na}_{2} \mathrm{O}$
B. $\mathrm{Na}_{2} \mathrm{O}_{2}$
C. NaOH
D. NaH
25. Given the reaction:

$$
\ldots \mathrm{Fe}^{3+}+\ldots \mathrm{Sn}^{2+} \rightarrow \ldots \mathrm{Fe}^{2+}+\ldots \mathrm{Sn}^{4+}
$$

When the reaction is completely balanced using smallest whole numbers the coefficient of Fe^{3+} will be
A. 1
B. 2
C. 3
D. 4
26. Given the balanced equation:

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{X}+\mathrm{H}_{2}
$$

What is the correct formula for the product represented by the letter X ?
A. NaO
B. $\mathrm{Na}_{2} \mathrm{O}$
C. NaOH
D. $\mathrm{Na}_{2} \mathrm{OH}$
27. When the equation $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}$ is completely balanced using smallest whole numbers, the coefficient of O_{2} would be
A. 1
B. 2
C. 3
D. 4
28. Given the unbalanced equation:

$$
\mathrm{Ca}^{0}+\mathrm{Al}^{3+} \rightarrow \mathrm{Ca}^{2+}+\mathrm{Al}^{0}
$$

When the equation is completely balanced with the smallest whole-number coefficients, what is the coefficient of Ca^{0} ?
A. 1
B. 2
C. 3
D. 4
29. When the equation $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ is balanced using smallest whole numbers, what is the coefficient of the O_{2} ?
A. 1
B. 2
C. 3
D. 4
30. When the equation

$$
\mathrm{Hg}+\ldots \mathrm{Ag}^{+} \rightarrow \ldots \quad \mathrm{Ag}+\mathrm{Hg}^{2+}
$$

is correctly balanced using smallest whole numbers, the coefficient in front of the Ag^{+}will be
A. 5
B. 2
C. 3
D. 4
31. When the equation

$$
\begin{aligned}
& \mathrm{Fe}^{2+}+\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow \\
& \ldots \\
& \mathrm{Fe}^{3+}+\mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

is completely balanced, the coefficient of the Fe^{2+} will be
A. 7
B. 6
C. 5
D. 4
32. When the equation

$$
\begin{aligned}
& \mathrm{Na}(\mathrm{~s})+\underset{ }{\square} \mathrm{NaOH}(\mathrm{aq})+\quad \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \\
& \mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

is correctly balanced using smallest whole numbers, the coefficient of the water is
A. 1
B. 2
C. 3
D. 4
33. Given the reaction:

```
\(\ldots \mathrm{Cu}(\mathrm{s})+\ldots \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow\)
\(\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\ldots \mathrm{NO}_{2}(\mathrm{~g})+\right.\)
    \(\mathrm{H}_{2} \mathrm{O}(\ell)\)
```

When the reaction is completely balanced using smallest whole numbers, the coefficient of $\mathrm{HNO}_{3}(\mathrm{aq})$ will be
A. 1
B. 2
C. 3
D. 4
34. Which equation is correctly balanced?
A. $\mathrm{Zn}+\mathrm{Ag}^{+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Ag}$
B. $\mathrm{Cu}+\mathrm{Au}^{3+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Au}$
C. $\mathrm{Al}+\mathrm{Sn}^{2+} \rightarrow \mathrm{Al}^{3+}+\mathrm{Sn}$
D. $\mathrm{Ca}+\mathrm{Mg}^{2+} \rightarrow \mathrm{Ca}^{2+}+\mathrm{Mg}$
35. Given the equation:

When the equation is completely balanced using smallest whole numbers, the coefficient of the $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ will be
A. 1
B. 5
C. 3
D. 4
36. Given the unbalanced equation:

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\underset{=}{\mathrm{O}_{2}(\mathrm{~g})} \rightarrow \\
& -\mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

When the equation is completely balanced using smallest whole numbers, the coefficient of O_{2} is
A. 5
B. 2
C. 3
D. 10
37. Given the reaction:

$$
\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} .
$$

How many moles of $\mathrm{H}_{2} \mathrm{O}$ are needed to exactly react with 2.0 moles of Ca ?
A. 1.0
B. 2.0
C. 0.50
D. 4.0
38. Magnesium was reacted with an excess of dilute hydrochloric acid and the hydrogen gas produced collected in an eudiometer. The volume of hydrogen in the eudiometer was corrected to conditions of STP. If 94.1 milliliters of hydrogen was produced, how much magnesium reacted in this experiment?
A. $\quad 0.01 \mathrm{~g}$
B. $\quad 0.10 \mathrm{~g}$
C. 0.05 g
D. 0.50 g
39. In the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, how many grams of H_{2} are needed to produce exactly 1 mole of ammonia?
A. 1 g
B. 2 g
C. 3 g
D. 4 g
40. Given the reaction:

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

What is the total number of moles of NaOH needed to react completely with 2 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 1
B. 2
C. 0.5
D. 4
41. Given the reaction: $2 \mathrm{C}_{2} \mathrm{H}_{6}+70_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ What is the total number of CO_{2} molecules produced when one mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ is consumed?
A. 6.02×10^{23}
B. $2\left(6.02 \times 10^{23}\right)$
C. $3\left(6.02 \times 10^{23}\right)$
D. $4\left(6.02 \times 10^{23}\right)$
42. Given the reaction:

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}
$$

What is the total number of moles of hydrogen produced when 4 moles of sodium react completely?
A. 1
B. 2
C. 3
D. 4
43. The maximum number of grams of potassium that can be obtained from 100 grams of KHCO_{3} is
A. $\quad 19.0 \mathrm{~g}$
B. $\quad 39.0 \mathrm{~g}$
C. 58.0 g
D. 100 g
44. Given the equation:

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

How many moles of HCl would be required to produce a total of 2 moles of H_{2} ?
A. 0.5
B. 2
C. 3
D. 4
45. Given the reaction:

$$
\mathrm{C}_{8} \mathrm{H}_{16+12 \mathrm{O}_{2}} \rightarrow 8 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

How many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced when 11.2 liters of $\mathrm{C}_{8} \mathrm{H}_{16}$ gas, measured at STP, reacts completely?
A. 8.00
B. 10.0
C. 30.0
D. 4.00
46. In the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$, what is the total number of moles of CO used to produce 112 grams of iron?
A. 1.0
B. 2.0
C. 3.0
D. 4.0
47. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$

In this reaction, how many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are required to completely react with 84 grams of CO ?
A. 64 g
B. 80 g
C. 160 g
D. 1400 g
48. $\mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow$

$2 \mathrm{NH}_{3}(\mathrm{aq})+3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$

If 54.0 grams of water are mixed with excess magnesium nitride, then how many grams of ammonia are produced?
A. $\quad 1.00$
B. 17.0
C. 51.0
D. 153
49. A mass of 5.4 grams of aluminum (Al) reacts with an excess of copper (II) chloride $\left(\mathrm{CuCl}_{2}\right)$ in solution, as shown below.
$3 \mathrm{CuCl}_{2}+2 \mathrm{Al} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{Cu}$
What mass of solid copper (Cu) is produced?
A. $\quad 0.65 \mathrm{~g}$
B. 8.5 g
C. 13 g
D. 19 g
50. Base your answer(s) to the following question(s) on the information below and on your knowledge of chemistry.

Many breads are made by adding yeast to dough, causing the dough to rise. Yeast is a type of microorganism that produces the catalyst zymase, which converts glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, to ethanol and carbon dioxide gas. The balanced equation for this reaction is shown below.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \xrightarrow{\text { zymase }} 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g})
$$

Determine the total mass of ethanol produced when 270. grams of glucose reacts completely to form ethanol and 132 grams of carbon dioxide.
51. Given the balanced equation representing a reaction:

$$
\mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\text { heat }
$$

What is the total mass of $\mathrm{CaO}(\mathrm{s})$ that reacts completely with 88 grams of $\mathrm{CO}_{2}(\mathrm{~g})$ to produce 200. grams of $\mathrm{CaCO}_{3}(\mathrm{~s})$?
A. 56 g
B. 88 g
C. 112 g
D. 288 g
52. Base your answer(s) to the following question(s) on the information below.

A 1.0 -gram strip of zinc is reacted with hydrochloric acid in a test tube. The unbalanced equation below represents the reaction.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnCl}_{2}(\mathrm{aq})
$$

Balance the equation for the reaction of zinc and hydrochloric acid, using the smallest whole-number coefficients.
53. Given the balanced equation representing a reaction:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is the total number of moles of $\mathrm{O}_{2}(\mathrm{~g})$ required for the complete combustion of 1.5 moles of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$?
A. 0.30 mol
B. 1.5 mol
C. 4.5 mol
D. 7.5 mol
54. Given the balanced equation representing a reaction:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

What is the total mass of water formed when 8 grams of hydrogen reacts completely with 64 grams of oxygen?
A. 18 g
B. 36 g
C. 56 g
D. 72 g
55. Given the balanced equation representing a reaction:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

What is the mole ratio of $\mathrm{CO}(\mathrm{g})$ to $\mathrm{CO}_{2}(\mathrm{~g})$ in this reaction?
A. $1: 1$
B. $1: 2$
C. $2: 1$
D. $3: 2$
56. Equal volumes of 0.5 M HCl and 0.5 M NaOH are mixed. The total volume of the resulting mixture is 2 liters. The pH of the resulting solution is
A. 1
B. 2
C. 7
D. 4
57. The pH of a $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution is
A. less than 1
B. greater than 1 but less than 7
C. equal to 7
D. greater than 7
58. The pH of a $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution is
A. less than 1
B. greater than 1 but less than 7
C. equal to 7
D. greater than 7
59. The pH of a $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution is
A. less than 1
B. greater than 1 but less than 7
C. equal to 7
D. greater than 7
60. The $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of a solution is 1×10^{-5} mole per liter. This solution is
A. acidic and has a pH of 5
B. acidic and has a pH of 9
C. basic and has a pH of 5
D. basic and has a pH of 9
61. How many milliliters of 5.0 M NaOH are needed to exactly neutralize 40 milliliters of 2.0 M HCl ?
A. 8.0
B. 10
C. 16
D. 40
62. A 0.1 M HCl solution differs from a 0.1 M NaOH solution in that the HCl solution
A. has a lower pH
B. turns litmus blue
C. contains $\mathrm{H}_{3} \mathrm{O}^{+}$ions
D. does not contain OH^{-}
63. What is the pH of a 0.001 M solution of HCl ?
A. 1
B. 7
C. 3
D. 11
64. Which statement best describes a solution with a pH of 3 ?
A. It has an $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of $1 \times 10^{3} \mathrm{~mol} / \mathrm{L}$ and is acidic.
B. It has an $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of $1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ and is acidic.
C. It has an $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of $1 \times 10^{3} \mathrm{~mol} / \mathrm{L}$ and is basic.
D. It has an $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of $1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ and is basic.
65. What is the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration of a solution that has an OH^{-}concentration of $1 \times 10^{-3} \mathrm{M}$?
A. $1 \times 10^{-3} \mathrm{M}$
B. $1 \times 10^{-7} \mathrm{M}$
C. $1 \times 10^{-11} \mathrm{M}$
D. $1 \times 10^{-14} \mathrm{M}$
66. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a 0.001 M NaOH solution?
A. 1×10^{-1}
B. 1×10^{-7}
C. 1×10^{-11}
D. 1×10^{-14}
67. As 0.1 M HCl is added to 0.1 M KOH , then pH of the basic solution
A. decreases and basicity decreases
B. increases and basicity decreases
C. decreases and basicity increases
D. increases and basicity increases
68. As the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of a solution increases, the pH of the solution
A. decreases
B. increases
C. remains the same
69. If the concentration of hydroxide ions in an aqueous solution is 1×10^{-5} mole per liter at 298 K , the concentration of the hydronium ions must be
A. 1×10^{-5} mole per liter
B. 1×10^{-7} mole per liter
C. 1×10^{-6} mole per liter
D. 1×10^{-14} mole per liter
70. When the pH of a solution is 8 , what is the OH^{-} ion concentration in moles per liter?
A. 1×10^{-6}
B. 1×10^{-7}
C. 1×10^{-8}
D. 1×10^{-14}
71. A 0.1 M solution of HCl contains
A. fewer $\mathrm{H}_{3} \mathrm{O}^{+}$ions than OH^{-}ions
B. more $\mathrm{H}_{3} \mathrm{O}^{+}$ions than OH^{-}ions
C. an equal number of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions
D. neither $\mathrm{H}_{3} \mathrm{O}^{+}$ions nor HO^{-}ions
72. The ionization constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ of HF is 6.7×10^{-4}. Which is true in a 0.1 M solution of this acid?
A. $\quad[\mathrm{HF}]$ is greater than $\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]$
B. $[\mathrm{HF}]$ is less than $\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]$
C. $[\mathrm{HF}]$ is equal to $\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]$
D. $[\mathrm{HF}]$ is equal to $\left[\mathrm{H}^{+}\right]+\left[\mathrm{F}^{-}\right]$
73. The ionization constant, K_{a}, for acetic acid at 1 atmosphere and 298 K is
A. 2.5×10^{-11}
B. 2.1×10^{-8}
C. 1.8×10^{-5}
D. 1.3×10^{-2}
74. What is the K_{w} of water at 1 atm and 298 K ?
A. 1.0×10^{-14}
B. 1.0×10^{-7}
C. 1.0×10^{14}
D. 1.0×10^{7}
75. A 0.1 M acid solution at 298 K would conduct electricity best if the acid had a K_{a} value of
A. 1.0×10^{-7}
B. 1.8×10^{-5}
C. 6.7×10^{-4}
D. 1.7×10^{-2}

