Sex-linked Genetic Disorders & Autosomal Disorders

Packet #15
Introduction

- **Sex Linked Genetic Disorders**
 - Disorders caused by malfunctioning genes on the sex chromosome.

- **Autosomal Genetic Disorders**
 - Disorders caused by malfunctioning genes on an autosome.
Hemophilia

- Hemophilia is an x-linked recessive disorder
 - Males will show this trait if they have the recessive allele on the X chromosome
 - Females will show this trait if they have the recessive allele on both X chromosomes
- Hemophilia does not allow individuals to have the ability to clot their blood.
Baldness

- Baldness is an x-linked dominant disorder
 - \(X^B X^b \)
 - This female will not go bald due to lack of testosterone
 - \(X^B X^B \)
 - This individual will start to lose her hair in the future
Autosomal Disorders
Huntington Disease

- Produced by a single dominant allele
- No symptoms appear until 30’s and 40’s
- Symptoms
 - Uncontrollable body movements
 - Degeneration of the nervous system
- Usually fatal 10-20 years after onset of symptoms

<table>
<thead>
<tr>
<th>Father</th>
<th>Mother</th>
<th>Huntington's Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>H</td>
<td>Hh, hh</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>Hh, hh</td>
</tr>
</tbody>
</table>

Affected child (Hh) = 2/4 = 50%
Carried child (hh) = 2/4 = 50%
There are no carriers
Sickle Cell Anemia I

- Sickle cell is an **autosomal recessive disorder**.

- The mutated allele, Hbs, causes a change in polypeptides found in hemoglobin
 - Hemoglobin is the protein that carries oxygen in red blood cells

- Remember, sickle cell is an example of overdominance (heterozygote advantage)
Sickle Cell Anemia II

- \(\text{Hb}^A\text{Hb}^A \)
 - Homozygous dominant
 - Individuals with this genotype have normal red blood cells but are not resistant to malaria.
- Malaria
 - Caused by the protist *Plasmodium falciparum*
 - Carried by *Anopheles* mosquito.
Sickle Cell Anemia III

- HbAHbS
 - Heterozygous
 - Individuals with this genotype have normal red blood cells but are partially resistant to malaria.
 - The protist *Plasmodium falciparum* spends time within red blood cells during their reproductive cycle.
 - When they enter red blood cells of an individual that has a heterozygote genotype for sickle cell, the cell is most likely to rupture—killing the protist.
Sickle Cell Anemia IV

- Hb^AHb^S
 - Heterozygous
 - In places of the world where malaria is prevalent, the sickle cell allele Hb^S is found in higher percentages.
 - Even though the genotype Hb^SHb^S condition is detrimental, the survival of the heterozygotes (Hb^AHb^S) within places of malaria makes sense—overdominance (heterozygote advantage).
 - They are less prone to malaria and do not have the severe affects of those suffering with sickle cell anemia.
Sickle Cell Anemia V

- **Hb^S**Hb^S
 - Homozygous recessive
 - Red blood cells have a sickle shape.
 - Sickle-shaped red blood cells.
 - Sickle cells have a shortened life span of a few weeks compared to normal cells which should be months.
 - Sickle cells can clog capillaries causing localized oxygen depletion.
Sickle Cell Anemia VI

- Symptoms
 - Fatigue (feeling tired)
 - Paleness
 - Jaundice (Yellowing of the skin and eyes)
 - Shortness of breath
Review
Review

Genetic Disorders

- Malfunctioning Genes
 - Sex Linked Disorders
 - Hemophilia
 - Autosomal Disorders
 - Huntington Disease
 - Sickle Cell Anemia
 - Baldness